pUNO1-SpikeV8-dfur

Expression vector encoding the SARS-CoV-2 Delta variant (B.1.617.2 lineage) Spike (delta furin) gene
Catalog code: p1-spike-v8-df
https://www.invivogen.com/delta-b1617-spike-expression-vectors
For research use only
Version 21G07-ED

PRODUCT INFORMATION

Contents

- $20 \mu \mathrm{~g}$ of lyophilized pUNO1-SpikeV8-dfur (plasmid DNA)
- $2 \times 1 \mathrm{ml}$ of Blasticidin ($10 \mathrm{mg} / \mathrm{ml}$)

Storage and Stability

- Product is shipped at room temperature.
- Store lyophilized DNA at $-20^{\circ} \mathrm{C}$.
- Resuspended DNA is stable for 1 year at $-20^{\circ} \mathrm{C}$.
- Store Blasticidin at $4^{\circ} \mathrm{C}$ or $-20^{\circ} \mathrm{C}$. The expiry date is specified on the product label.

Quality control

- Plasmid construct is confirmed by restriction analysis and full-length open reading frame (ORF) sequencing.
- After purification by ion exchange chromatography, predominant supercoiled conformation is verified by electrophoresis.

PLASMID FEATURES

Delta Variant SARS-CoV-2 Spike cassette

- EF-1a/HTLV hybrid promoter is a composite promoter comprised of the Elongation Factor-1a (EF-1a) core promoter ${ }^{1}$ and the 5^{\prime} untranslated region of the Human T-Cell Leukemia Virus (HTLV). EF-1a utilizes a type 2 promoter that encodes a "house-keeping"gene. It is expressed at high levels in all cell cycles and lower levels during the GO phase. Additionally, since the promoter is not tissue-specific it is highly expressed in all cell types. The R segment and part of the $U 5$ sequence ($R-U 5^{\prime}$) of the HTLV Type 1 Long Terminal Repeat² has been coupled to the EF-1a promoter to enhance stability of DNA and RNA. This modification not only increases steady state transcription, but also significantly increases translation efficiency.
- Codon-optimized Spike ORF
pUNO1-SpikeV8-dfur contains the Spike (S) coding sequence from the Delta variant (B.1.617.2 lineage), first indentified in India. This variant is characterized by a number of mutations and deletions within the Spike coding sequence (see below) ${ }^{3}$. The furin cleavage site in pUNO1-SpikeV8-dfur has been inactivated (dfur) by the inclusion of two mutations (R683/5A). Furthermore, to improve expression of the S protein in cell lines, the gene is codon-optimized and the last 19 amino acids, which contain an ER-retention motif (KxHxx), have been removed ${ }^{4,5}$.
pUNO1-SpikeV8-dfur includes the following sequence features:
- S1 domain: T19R, T95I, G142D, E156G, \triangle F157-R158, D614G, P681R
- RBD: L452R, T478K
- S1/S2 boundary: R683A, R685A
- S2 domain: D950N

Spike (S) is a structural glycoprotein expressed on the surface of SARS-CoV-2. It mediates membrane fusion and viral entry into target cells upon binding to the host receptor ACE2 and the proteolytic activity of host proteases such as furin and TMPRSS2 ${ }^{6}$.
For more information visit: https://www.invivogen.com/sars2-spike

- SV40 pAn is the Simian Virus 40 late polyadenylation (pAn) signal and it enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA ${ }^{7}$

Antibiotic selection cassette

- hCMV (human cytomegalovirus) enhancer \& promoter drive the expression of the blasticidin resistance gene (bsr) in mammalian cells.
- EM7 is a bacterial promoter that enables the constitutive expression of the blasticidin resistance gene (bsr) in E. coli.
- bsr (blasticidin resistance gene) encodes a deaminase from Bacillus cereus that confers resistance to the antibiotic blasticidin. The expression of the bsr gene is driven by the CMV promoter/enhancer and the bacterial EM7 promoter. Therefore, Blasticidin can be used to select stable clones in mammalian cells and E. coli transformants.
- Human β-Globin pAn is a strong polyadenylation (pAn) signal placed downstream of bsr. The use of β-globin pAn minimizes interference and possible recombination events with the SV40 pAn signal ${ }^{8}$.

General features of pUNO1-SpikeV8-dfur
 - pMB1 ori is a minimal E. coli origin of replication.

APPLICATIONS

Stable gene expression in mammalian cells.
pUNO1 plasmids are designed for both transient and stable transfection in mammalian cell lines by selection with Blasticidin. Furthermore, they faciliate high levels of expression of the gene of interest.

Antibody screnning by flow cytometry

pUNO1-SpikeV8-dfur has been specifically designed for mammalian cell expression of the SARS-CoV-2 S protein. Notably, due to the inactivated furin cleavage site, when this plasmid is expressed by a host cell (e.g. 293T cells) there is high surface expression of the full-length S protein ${ }^{4,9}$. Ideal for SARS-CoV-2 S-specific antibody screening by flow cytometry (in-house data).

METHODS

- Plasmid resuspension
- Quickly spin the tube containing the lyophilized plasmid to pellet the DNA.
- To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile water.
- Store the resuspended plasmid at $-20^{\circ} \mathrm{C}$.
- Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT116 or other commonly used laboratory E. coli strains, such as DH5a.

- Blasticidin usage

Blasticidin should be used at 25-100 $\mu \mathrm{g} / \mathrm{ml}$ in bacteria and $1-30 \mu \mathrm{~g} / \mathrm{ml}$ in mammalian cells. Blasticidin is supplied as a $10 \mathrm{mg} / \mathrm{ml}$ colorless solution in HEPES buffer.

REFERENCES

1. Kim D. et al., 1990. Use of the human elongation factor 1 a promoter as a versatile and efficient expression system. Gene 91(2):217-23 2. Takebe Y. et al., 1988. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 8(1):466-72. 3. Davis, C. et al. 2021. Reduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination. medRxiv doi:10.1101/2021.06.23.21259327. 4. Johnson, M.C. et al. 2020. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein. J Virol 94. 5. Ou, X. et al. 2020. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11, 1620. 6. Hoffmann M. et al., 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:1-16. 7. Carswell S. \& Alwine J., 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol Cell Biol. 9(10):424858. 8. Yu J. \& Russell J., 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human β-globin mRNA. Mol Cell Biol. 21(17):5879-88. 9. Walls, A.C. et al. 2020. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell.

RELATED PRODUCTS

Product	Description	Cat. Code
Blasticidin	Selection antibiotic	ant-bl-1
ChemiComp GT116	Competent E. coli	gt116-11
COVID-19 Product Range		hkb-hace2
HEK-Blue ${ }^{\text {TM }}$ hACE2 Cells	Cell line	a549-hace2-tpsa
A549-hACE2-TMPRSS2 Cells	Cell Line	puno1-hace2
pUNO1-hACE2	Expression vector	Expression vector
pUNO1-hTMPRSS2a	RecombinantAntibody	cov2rbdc1-mab1

For a complete list of InvivoGen's COVID-19 related products visit: https://www.invivogen.com/covid-19

TECHNICAL SUPPORT
InvivoGen USA (Toll-Free): 888-457-5873
InvivoGen USA (International): +1 (858) 457-5873
InvivoGen Europe: +33 (0) 5-62-71-69-39

GAAGTTGGGGGGAGGGGTCGGCAATTGAACGGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCC
401 GAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACACAGCTGAAGCTTCGAGGGGCTC
501 GCATCTCTCCTTCACGCGCCCGCCGCCCTACCTGAGGCCGCCATCCACGCCGGTTGAGTCGCGTTCTGCCGCCTCCCGCCTGTGGTGCCTCCTGAACTGC
601 GTCCGCCGTCTAGGTAAGTTTAAAGCTCAGGTCGAGACCGGGCCTTTGTCCGGCGCTCCCTTGGAGCCTACCTAGACTCAGCCGGCTCTCCACGCTTTGC

701 CTGACCCTGCTTGCTCAACTCTACGTCTTTGTTTCGTTTTCTGTTCTGCGCAGTTACAGATCCAAGCTGTGACCGGCGCCTACCTGAGATCACCGGTCAA

T19R (855)

801 CATGTTTGTGTTCTTGGTGTTGCTTCCACTGGTCAGTTCCCAATGCGTTAATCTCAGAACCCGAACTCAACTCCCACCCGCATATACAAATTCCTTCACC
 901 AGAGGAGTGTACTATCCTGACAAAGTGTTTCGGTCAAGTGTCCTCCACTCTACTCAGGACCTCTTTCTGCCTTTCTTTTCTAACGTTACATGGTTTCATG 34. R G V Y Y P D K V F R S S V L H S T T95I (1083)
1001 CAATCCATGTGTCTGGGACAAACGGCACCAAACGCTTCGACAACCCTGTATTGCCATTCAATGATGGGGTGTACTTTGCCTCCATTGAGAAATCCAACAT
 1101 CATTCGAGGATGGATTTTCGGGGACTACTCTGGACTCAAAGACACAGAGCCTGCTGATCGTTAACAACGCCACAAACGTTGTCATCAAAGTGTGCGAATTC 100. I R G W I F G T T L D S K T Q S L L I V N N A T N V V I K V C $\Delta F 157+\Delta R 158$ (1269)

```
G142D (1224) E156G (1266)
```

1201 CAGTTTTGCAATGATCCCTTCCTGGATGTGTACTATCACAAGAATAACAAGTCCTGGATGGAGAGCGGAGTCTACAGCAGCGCAAACAACTGCACCTTCG 134. Q F C N N D P F L D V Y Y H K N N N K 1301 AGTACGTGAGTCAACCCTTTCTGATGGACCTGGAAGGGAAACAGGGAAACTTCAAGAACCTGAGAGAGTTTGTCTTTAAGAACATCGACGGCTATTTTAA
 1401 GATCTATAGTAAGCATACGCCTATCAACCTGGTAAGGGATCTTCCCCAGGGCTTTTCAGCCCTGGAACCTTTGGTTGACTTGCCTATTGGTATCAATATC
 1501 ACCAGATTTCAGACCCTTCTGGCATTGCAICGGTCTTATCTTACTCCAGGTGATTCCTCCTCCGGGTGGACTGCCGGCGCCGCTGCCTACTATGTCGGCT 234. T R F Q T L L A L H R S Y L T 1601 ATCTGCAACCAAGAACGTTCCTGCTCAAGTACAACGAAAACGGCACTATTACGGATGCTGTTGATTGTGCCCTGGACCCTCTGTCTGAGACTAAATGCAC 267. Y L Q P R T F L L K Y N E N G T I T D A V D C A L D P L 1701 CCTCAAGAGCTTTACCGTTGAGAAGGGGATTTACCAAACCAGTAATTTCCGGGTCCAACCCACCGAAAGCATTGTGCGGTTCCCAAATATCACCAATCTG

1801 TGTCCCTTTGGCGAAGTGTTCAATGCTACAAGGTTTGCTTCTGTGTACGCATGGAATAGGAAACGCATCTCCAATTGTGTCGCTGATTACTCCGTGCTGT

1901 ACAATTCCGCCTCTTTCTCAACCTTCAAGTGTTATGGCGTTTCACCTACCAAACTTAACGACCTGTGCTTCACTAATGTGTATGCCGACTCTTTTGTGAT
 2001 ACGAGGCGATGAAGTGAGACAGATTGCACCAGGGCAGACCGGCAAAATTGCCGACTACAACTACAAGCTTCCAGATGACTTTACCGGATGTGTTATTGCA
 L452R (2148)
2101 TGGAACTCAAACAATCTGGATTCCAAGGTGGGTGGCAACTATAACTACCGCTATAGACTGTTCAGGAAATCCAACCTGAAACCATTCGAGCGAGATATAA

T478K (2226)

2201 GCACAGAAATCTACCAGGCTGGAAGTAAACCCTGCAACGGCGTGGAAGGGTTCAACTGCTACTTCCCATTGCAGAGTTACGGATTCCAGCCTACAAACGG

2301 GGTGGGTTACCAACCCTATCGTGTCGTAGTCCTGAGTTTTGAGCTCCTCCATGCCCCAGCCACAGTCTGTGGCCCCCAAGAAAAGCACCAATCTGGTGAAG

2401 AACAAATGCGTGAACTTTAACTTTAACGGACTCACAGGAACCGGCGTATTGACGGAGAGTAACAAGAAGTTCCTGCCATTCCAGCAGTTCGGTCGCGATA

2501 TTGCCGACACTACCGACGCTGTCCGAGATCCCCAGACATTGGAGATTCTTGATATCACACCCTGTAGTTTCGGCGGAGTGAGCGTGATTACGCCCGGAAC 567. I A D T T D A V R D P Q T L E I L D I T P C

D614G (2634)

2601 CAATACCAGCAATCAGGTTGCCGTCCTGTATCAGGGCGTGAATTGCACCGAGGTACCTGTCGCCATCCACGCTGACCAACTTACACCCACATGGCGAGTA
 2701 TATTCCACCGGCTCCAACGTCTTTCAGACACGTGCTGGATGTCTGATCGGTGCAGAACACGTTAATAATAGCTACGAGTGTGATATCCCCATCGGTGCTG 634. Y S T G S N V F Q T R A G C L I G A E H V N N S Y E C D I P I G A R683A (2841)
P681R (2835) R685A (2847)
2801 GAATATGCGCCTCTTATCAAACTCAAACCAACTCTCGTAGGGCGGCAGCTAGTGTAGCATCCCAAAGTATCATTGCCTACACAATGAGCCTCGGTGCTGA
 2901 GAATTCTGTCGCCTACAGCAACAACTCCATTGCTATCCCTACTAACTTCACAATCAGTGTGACAACTGAAATTCTGCCCGTATCTATGACCAAAACAAGC
 3001 GTTGACTGCACCATGTACATCTGTGGCGATTCTACCGAATGTAGCAATCTCCTCCTGCAATACGGATCATTCTGCACTCAGCTGAATCGTGCCCTCACAG 734. V D C T M Y I C G D S T 3101 GTATTGCAGTTGAGCAGGACAAGAATACGCAGGAAGTGTTTGCCCAGGTGAAGCAAATCTACAAAACTCCACCCATAAAAGACTTTGGCGGATTCAATTT
 3201 CTCACAGATCCTGCCCGATCCCTCAAAACCCTCCAAGCGTAGCTTTATCGAGGATCTGCTCTTCAACAAGGTAACCCTCGCAGATGCCGGTTTCATCAAG
 3301 CAGTATGGCGATTGTCTGGGAGACATCGCCGCTCGGGACCTGATCTGTGCACAGAAGTTCAATGGACTGACCGTGCTGCCTCCCTTGCTGACCGACGAGA
 3401 TGATAGCCCAATACACTAGCGCCCTGCTGGCCGGCACCATCACTTCTGGGTGGACATTCGGAGCTGGCGCTGCCCTTCAGATTCCTTTTGCTATGCAGAT
 3501 GGCCTACCGCTTTAACGGCATCGGTGTGACACAAAACGTTCTGTATGAAAACCAGAAACTCATCGCCAACCAGTTCAACAGTGCTATCGGTAAGATACAG
 D950N (3642)
3601 GATAGCCTGTCATCCACTGCCAGCGCATTGGGAAAGTTGCAGAATGTAGTGAACCAGAATGCCCAGGCACTTAACACCCTGGTGAAACAGCTCTCTTCAA
 3701 ATTTTGGTGCCATTTCTAGCGTGCTGAATGACATACTGAGCCGGTTGGACAAGGTGGAGGCTGAAGTGCAGATTGATAGGCTGATAACTGGGCGCCTTCA
 3801 GTCTCTTCAGACCTATGTGACCCAGCAGCTCATCCGCGCTGCTGAAATTCGCGCATCCGCTAACCTGGCAGCAACCAAAATGTCCGAGTGTGTGCTGGGT
 3901 CAGTCTAAGAGAGTGGACTTTTGCGGGAAGGGGTATCACCTGATGTCTTTTCCTCAGTCTGCACCCCATGGTGTGGTCTTTCTGCACGTGACTTATGTCC
 4001 CAGCTCAGGAAAAGAACTTCACTACAGCCCCAGCCATCTGCCACGATGGGAAAGCCCACTTTCCCAGGGAAGGCGTATTCGTGTCCAATGGTACTCATTG 1067. P A Q E K N F T T A P A I C H D G K A 4101 GTTCGTCACTCAGAGAAATTTCTACGAGCCCCAGATTATAACCACTGACAATACATTTGTATCCGGCAATTGTGATGTGGTTATCGGGATTGTGAATAAT
 4201 ACTGTTTACGATCCTTTGCAGCCAGAGCTGGACTCCTTCAAGGAGGAGCTTGACAAATATTTTTAAGAATCACACATCACCTGACGTCGACCTCGGAGATA 1134. T V Y D P L Q P E L D S F K 4301 TTTCAGGAATCAATGCTTCCGTGGTCAATATTCAGAAGGAGATAGACAGGCTGAATGAGGTTGCCAAGAACCTCAACGAGTCTCTGATCGATCTGCAGGA
 4401 GTTGGGCAAGTACGAACAGTATATCAAATGGCCATGGTACATTTGGCTTGGGTTCATTGCTGGGCTGATAGCTATCGTCATGGTGACAATTATGTTGTGT 1200. L G K Y E Q Y I K W P W Y I W L G F I A G L I A I V M V T I M L C Nhel (4561)
4501 TGCATGACATCCTGCTGTAGTTGTCTGAAGGGCTGCTGCTCATGCGGCAGCTGTTGCTAAAGCTAGCTGGCCAGACATGATAAGATACATTGATGAGTTT 1234. C M T S C C S C L K G C C S C G S C C •

4601 GGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAG
4701 TTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGAATT
4801 CTAAAATACAGCATAGCAAAACTTTAACCTCCAAATCAAGCCTCTACTTGAATCCTTTTTCTGAGGGATGAATAAGGCATAGGCATCAGGGGCTGTTGCCA
4901 ATGTGCATTAGCTGTTTGCAGCCTCACCTTCTTTCATGGAGTTTAAGATATAGTGTATTTTCCCAAGGTTTGAACTAGCTCTTCATTTCTTTATGTTTTA
5001 AATGCACTGACCTCCCACATTCCCTTTTTAGTAAAATATTCAGAAATAATTTAAATACATCATTGCAATGAAAATAAATGTTTTTTATTAGGCAGAATCC
5101 AGATGCTCAAGGCCCTTCATAATATCCCCCAGTTTAGTAGTTGGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGGACAGCAAGAAAGCGAGCTTCT
5201 AGCTTTAGTTCCTGGTGTACTTGAGGGGGATGAGTTCCTCAATGGTGGTTTTGACCAGCTTGCCATTCATCTCAATGAGCACAAAGCAGTCAGGAGCATA 141 • N R T Y K L P I L E E I T T K V L K G N M E I L V F C 5301 GTCAGAGATGAGCTCTCTGCACATGCCACAGGGGCTGACCACCCTGATGGATCTGTCCACCTCATCAGAGTAGGGGTGCCTGACAGCCACAATGGTGTCA
 5401 AAGTCCTTCTGCCCGTTGCTCACAGCAGACCCAATGGCAATGGCTTCAGCACAGACAGTGACCCTGCCAATGTAGGCCTCAATGTGGACAGCAGAGATGA 751 F D K Q G N S V A S G I A I A E A C 5501 TCTCCCCAGTCTTGGTCCTGATGGCCGCCCCGACATGGTGCTTGTTGTCCTCATAGAGCATGGTGATCTTCTCAGTGGCGACCTCCACCAGCTCCAGATC 42 E G T K T R I A A G V H H K N D E Y L M T I K E T A 5601 CTGCTGAGAGATGTTGAAGGTCTTCATGATGGCCCTCCTATAGTGAGTCGTATTATACTATGCCGATATACTATGCCGATGATTAATTGTCAAAACAGCG 91 Q Q S I N F T K M
5701 TGGATGGCGTCTCCAGCTTATCTGACGGTTCACTAAACGAGCTCTGCTTATATAGACCTCCCACCGTACACGCCTACCGCCCATTTGCGTCAATGGGGCG

5801 GAGTTGTTACGACATTTTGGAAAGTCCCGTTGATTTACTAGTCAAAACAAACTCCCATTGACGTCAATGGGGTGGAGACTTGGAAATCCCCGTGAGTCAA
— \longleftarrow —
5901 ACCGCTATCCACGCCCATTGATGTACTGCCAAAACCGCATCATCATGGTAATAGCGATGACTAATACGTAGATGTACTGCCAAGTAGGAAAGTCCCATAA

6001 GGTCATGTACTGGGCATAATGCCAGGCGGGCCATTTACCGTCATTGACGTCAATAGGGGGCGTACTTGGCATATGATACACTTGATGTACTGCCAAGTGG

6101 GCAGTTTACCGTAAATACTCCACCCATTGACGTCAATGGAAAGTCCCTATTGGCGTTACTATGGGAACATACGTCATTATTGGACGTCAATGGGCGGGGGT
BspLU11I (6265)
6201 CGTTGGGCGGTCAGCCAGGCGGGCCATTTACCGTAAGTTATGTAACGCCTGCAGGTTAATTAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAAC
-GTAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGCGAGCATCACAAAATCGCGCTCAAGTCAGAGGTGGCGAACCCGACAG
6301 CGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAG
6401 GACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTC

6501 GGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAG
6601 CCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCA
6701 GAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCC

6801 AGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGA
6901 AAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGGCTAGTTAAT
7001 TAACATTTAAATCAGCGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTGTGTGAATCGTAACTAACATACGCTCTCCATCAA
7101 AACAAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAACATTTCTCTATCGAA

